Insuring the Integrity of Clinical Registries: An Example of Managing a Large Multicenter Neurologically III Patient Database

Aardhra Venkatachalam MPH, Anjali Perera BSN RN, Sonja Stutzman PhD, DaiWai Olson PhD RN CCRN, Venkatesh Aiyagari MD, Folefac Atem PhD

#### INTRODUCTION

- All data is subject to error and missing values; Large databases are prone to greater errors and more missing data
- Errors have implications for patient treatments and clinical practice
- Database used: Establishing Normative Data for Pupillometer Assessments in Neuroscience Intensive Care (END-PANIC)
- Multicenter database houses over >30,000 pupil readings, which are used to provide clinical info in neurocritically ill patients
- This poster highlights the methods used to ongoing data quality assurance.

#### **METHODS**



#### I. Screening

Enrollment of participants; Inclusion/Exclusion Criteria defined

What type of Data was collected? (Ex: Baseline, Pupil, Daily) Where did we get the data? (Texas, California, Ohio)

#### II. Data Organization

- -Enrollment of participants; deidentification of data
- -segregated data into groups with identifier for all locations
- -treated blank cells, extra columns, highlighted errors





### III. Diagnostic

- -Did the data we collected make sense? If not, what was the issue?
- -Made sure data was biologically possible with related points

#### IV. Treatment

- -What did we do to fix the problems identified?
- -made changes in spreadsheet and rerun descriptive statistics
- \*\*Checks were done as new data was added to the database



## V. Missing Data

- -What does the missing data tell us about the quality of our data?
- -Was the missing data informative or non-informative?

# UTSouthwestern O'Donnell Brain Institute

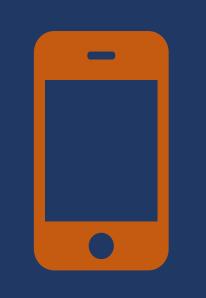


An inclusive,
interdisciplinary approach
to managing large datasets
leads to higher data
integrity. Missing data
analysis can further direct

data collection and use of



resources.



Take a picture to download the full poster

#### **RESULTS**

Table 1: T-test/Chi-squared to determine type of missingness

| Variable | Gender | Age    | Race   | Ethnicity        |
|----------|--------|--------|--------|------------------|
| NPIL     | 0.6542 | 0.0019 | <.0001 | <.0001           |
| NPIR     | 0.0936 | 0.2870 | 0.2351 | <u>&lt;.0001</u> |
| CVL      | 0.6542 | <.0001 | <.0001 | <.0001           |
| CVR      | 0.0936 | <.0001 | 0.2351 | <.0001           |
| DVL      | 0.6542 | 0.0019 | <.0001 | <.0001           |
| DVR      | 0.0936 | 0.2870 | 0.2351 | <.0001           |
| CataL    | 0.6542 | 0.0019 | <.0001 | <.0001           |
| CataR    | 0.0936 | 0.2870 | 0.2351 | <.0001           |
| LatL     | 0.6542 | 0.0019 | <.0001 | <.0001           |
| LatR     | 0.0936 | 0.2870 | 0.2351 | <.0001           |
| MCVL     | 0.6542 | 0.0019 | <.0001 | <.0001           |
| MCVR     | 0.0936 | 0.2870 | 0.2351 | <.0001           |
| SizeL    | 0.6542 | 0.0019 | 0.0076 | <.0001           |
| SizeR    | 0.0936 | 0.2870 | 0.0009 | <.0001           |
|          |        |        |        |                  |

Missing data was informative for age, race and ethnicity. Missing data was not informative fore gender for any of the pupillometer measurements used.

Table 2: Pearson's Correlation: Standardized coefficient

| Variable(s) | Texas | Ohio | California | Combined |
|-------------|-------|------|------------|----------|
| NPIL/NPIR   | 0.80  | 0.91 | 0.77       | 0.81     |
| CVL/CVR     | 0.88  | 0.87 | 0.90       | 0.87     |
| DVL/DVR     | 0.87  | 0.86 | 0.88       | 0.86     |
| CataL/CataR | 0.62  | 0.97 | 0.96       | 0.63     |
| LatL/LatR   | 0.63  | 0.68 | 0.63       | 0.65     |
| MCVL/MCVR   | 0.88  | 0.88 | 0.91       | 0.89     |
| SizeL/SizeR | 0.92  | 0.92 | 0.90       | 0.92     |

Npi, Dilation velocity, constriction velocity, pupil latency all showed a high correlation between the Texas, California and Ohio locations. Prese4nce/absence of cataract shoed as a low correlation, possibly because of the difference in age distribution between sites.

#### CONCLUSIONS

- Methods used to clean and manage database allowed for easy identification and correction of errors
- Process was double checked by a faculty level statistician
- Informative and non-informative missing data was identified, which helped the research team plan future steps and directions.
- We encourage others to utilize these techniques on large datasets with neurocritically ill patients



