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An inclusive,

interdisciplinary approach 

to managing large datasets 

leads to higher data 

integrity. Missing data 

analysis can further direct 

data collection and use of 

resources. 
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INTRODUCTION

• All data is subject to error and missing values; Large databases 

are prone to greater errors and more missing data

• Errors have implications for patient treatments and clinical 

practice

• Database used : Establishing Normative Data for Pupillometer 

Assessments in Neuroscience Intensive Care (END-PANIC)

• Multicenter database  houses over >30,000 pupil readings, which 

are used to provide clinical info in neurocritically ill patients

• This poster highlights the methods used to ongoing data quality 

assurance.

METHODS
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V.    Missing Data
-What does the missing data tell us about the quality of our 
data? 
-Was the missing data informative or non-informative?

I.   Screening
- Enrollment of participants; Inclusion/Exclusion Criteria 

defined
- What type of Data was collected? (Ex: Baseline, Pupil, Daily)
- Where did we get the data? (Texas, California, Ohio)

II.      Data Organization
-Enrollment of participants; deidentification of data
-segregated data into groups with identifier for all locations
-treated blank cells, extra columns, highlighted errors
-standardized variable columns and variable values

III.      Diagnostic
-Did the data we collected make sense? If not, what 
was the issue?
-Made sure data was biologically possible with related 
points

IV.   Treatment
-What did we do to fix the problems identified?
-made changes in spreadsheet and rerun descriptive statistics
**Checks were done as new data was added to the database

Variable Gender Age Race Ethnicity

NPIL 0.6542 0.0019 <.0001 <.0001

NPIR 0.0936 0.2870 0.2351 <.0001

CVL 0.6542 <.0001 <.0001 <.0001

CVR 0.0936 <.0001 0.2351 <.0001

DVL 0.6542 0.0019 <.0001 <.0001

DVR 0.0936 0.2870 0.2351 <.0001

CataL 0.6542 0.0019 <.0001 <.0001

CataR 0.0936 0.2870 0.2351 <.0001

LatL 0.6542 0.0019 <.0001 <.0001

LatR 0.0936 0.2870 0.2351 <.0001

MCVL 0.6542 0.0019 <.0001 <.0001

MCVR 0.0936 0.2870 0.2351 <.0001

SizeL 0.6542 0.0019 0.0076 <.0001

SizeR 0.0936 0.2870 0.0009 <.0001

RESULTS

Variable(s) Texas Ohio California Combined

NPIL/NPIR 0.80 0.91 0.77 0.81

CVL/CVR 0.88 0.87 0.90 0.87

DVL/DVR 0.87 0.86 0.88 0.86

CataL/CataR 0.62 0.97 0.96 0.63

LatL/LatR 0.63 0.68 0.63 0.65

MCVL/MCVR 0.88 0.88 0.91 0.89

SizeL/SizeR 0.92 0.92 0.90 0.92

Table 1: T-test/Chi-squared to determine type of missingness

Missing data was informative for age, race and ethnicity.  Missing data 
was not informative fore gender for any of the pupillometer 
measurements used. 

Table 2: Pearson’s Correlation: Standardized coefficient

Npi, Dilation velocity, constriction  velocity, pupil latency all showed a 
high correlation between the Texas, California and Ohio locations. 
Prese4nce/absence of cataract shoed as a low correlation, possibly 
because of the difference in age distribution between sites. 

CONCLUSIONS

• Methods used to clean and  manage database  allowed for 
easy identification and correction of errors

• Process was double checked by a faculty level statistician
• Informative and non-informative missing data was 

identified, which helped the research team plan future steps 
and directions.

• We encourage others to utilize these techniques on large 
datasets with neurocritically ill patients


